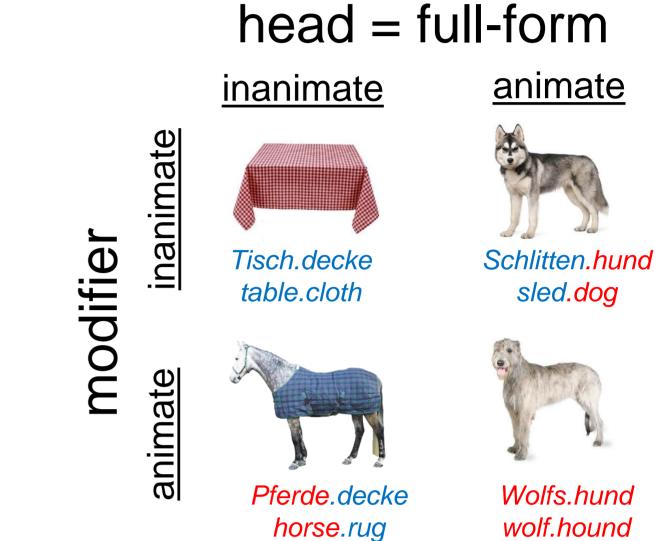

Wolf-hound vs. sled-dog:

ERP evidence reveals that semantic

constituent properties are accessed during compound recognition

Universität Konstanz

Anna Czypionka, Mariya Kharaman & Carsten Eulitz University of Konstanz, Department of Linguistics


Background

Access to constituent properties during compound processing?

Stimuli

Critical: German compounds, 2x2-design

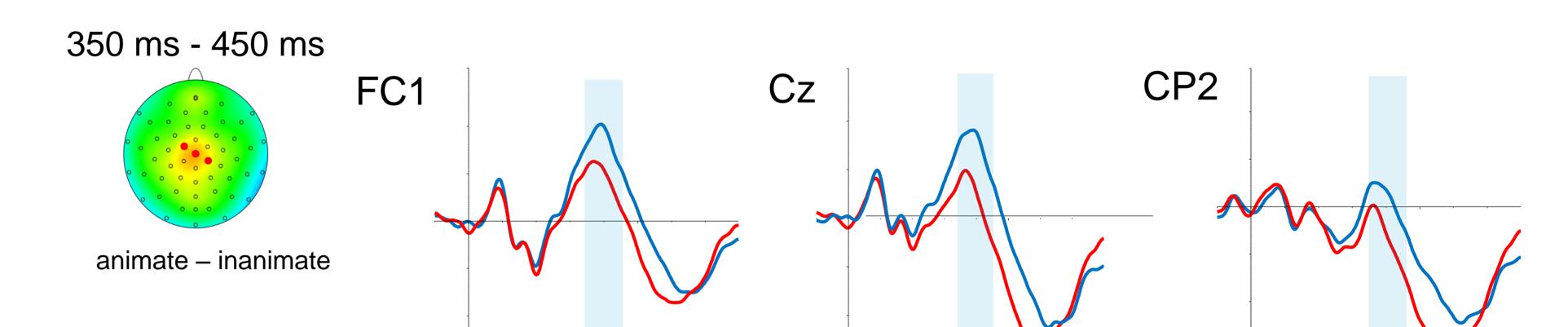
modifier animacy (inanimate / animate)

- Certainly morphological decomposition monitored with intrinsic constituent properties [1, 8, 11, 12, 13, 17, 19, 26, 15, 16, 20, 23, 30...]
- Probably some amount of semantic decomposition – monitored with contextual semantic constituent properties (headedness, transparency) [3, 14, 21, 25, 31]
- Animacy = intrinsic semantic property! Lexical access for animates less costly than for inanimates; visible in RTs [7, 9], memory tasks [22, 29], picture and word recall and recognition tasks [5, 7, BOLD response [2], N400 amplitude [24]
- \rightarrow Does constituent animacy influence the recognition of German noun-noun **compounds** like *Schlitten.hund* ('sled dog')?

Method

- Lexical decision task with EEG measurements \bullet
- 39 participants (18-31 years, mean 23.2; 18) \bullet

 head animacy = full-form animacy (inanimate / animate) Important: German has no head-first compounds!


Control: Simple words, inanimate / animate

40 items / condition, equal number similar pseudowords


Matched for length, frequency, transparency, familiarity

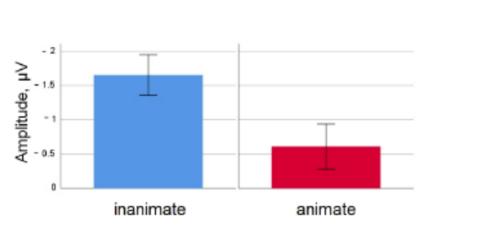
Results

Simple words

Separate analysis for simple (control) and compound (critical) conditions.

Discussion

Simple: Control experiment works, replicates literature [24]

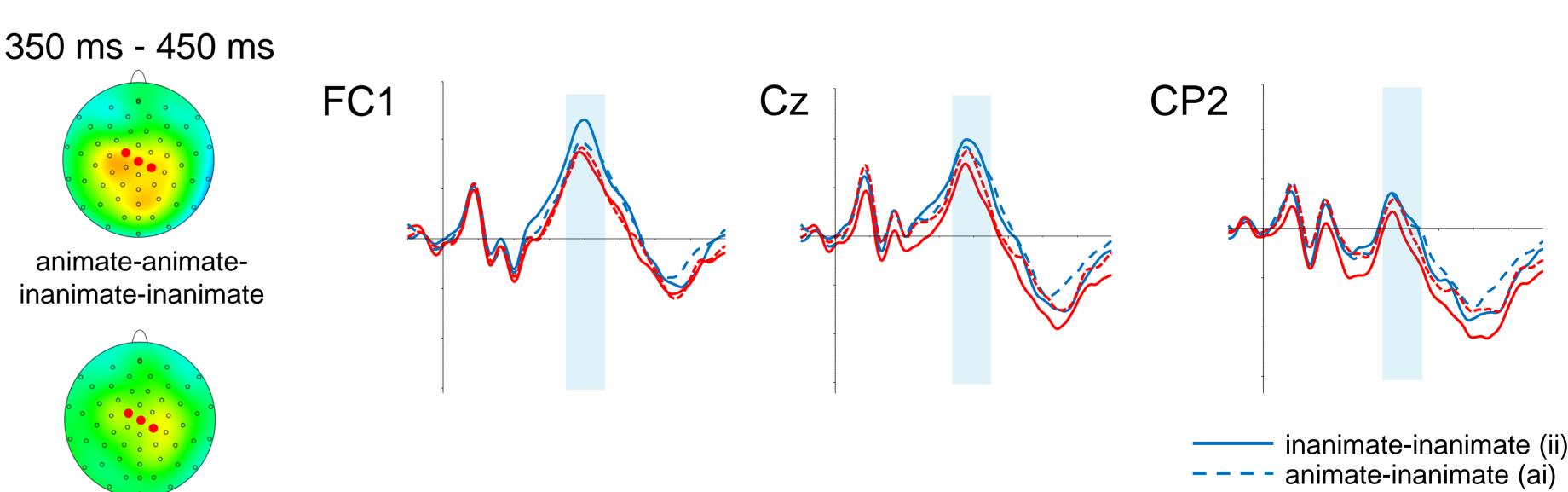

Compound:

Both head and modifier animacy influence N400 amplitude

 \rightarrow Access to modifier semantics

 \rightarrow Semantic decomposition

Simple lexical decision task, no priming, only transparent words, only "simple" pseudowords



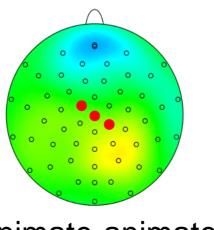
N400 amplitude is smaller for animates than for inanimates.

ANIMACY significant in medial-lateral regions medial-left (p <.001), midline (p <.001), medial-right (p <.05)).

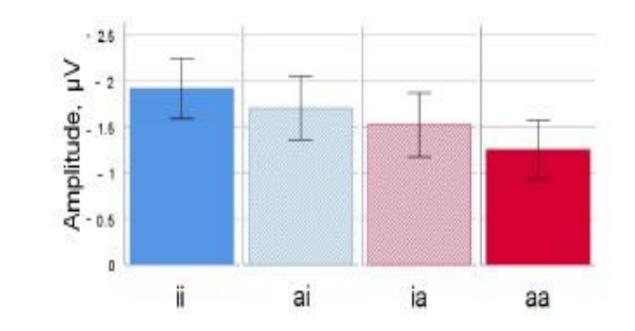
Compounds

 \rightarrow Semantic decomposition is automatic

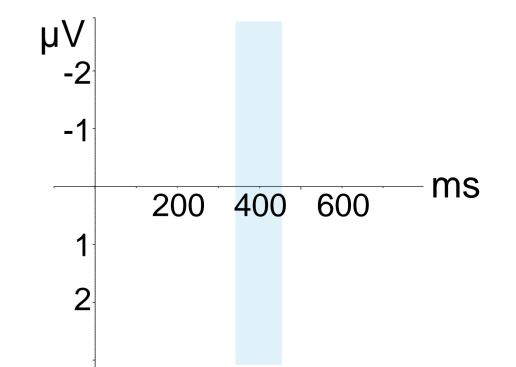
Results look additive:


- Number of animate constituents ~ N400 amplitude.
- No interactions of head and modifier animacy lacksquare – currently no evidence for a stronger influence of head / full-form than modifier animacy

Results fit models allowing early access to lexical and semantic constituent properties


full-parsing models [18, 28]

dual/multiple route models [4, 10, 16]


animate-animateanimate-inanimate

animate-animateinanimate-animate

----- inanimate-animate (ia) animate-animate (aa)

N400 amplitude: $AA < |A \approx A| < |I|$

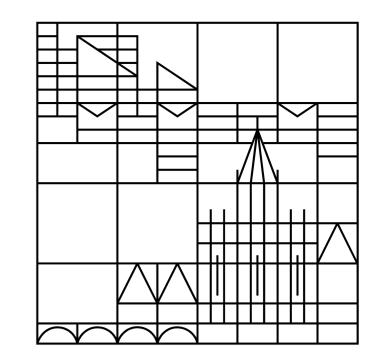
- sign. main effect HEAD (F(1,38) = 11.20, p < .01)
- MODIFIER sign. in medial (p < .01), posterior-medial (p < .01), and posterior (p < .05)).

CONTACT: Anna Czypionka anna.czypionka@uni-konstanz.de

Wolf-hound vs. sled-dog:

ERP evidence reveals that semantic

constituent properties are accessed


during compound recognition

Anna Czypionka, Mariya Kharaman & Carsten Eulitz University of Konstanz, Department of Linguistics

References

[1] Andrews, S., Miller, B., and Rayner, K. (2004). Eye movements and morphological segmentation of compound words: There is a mouse in mousetrap. European Journal of Cognitive Psychology 16, 285–311 [2] Anzellotti, S., Mahon, B. Z., Schwarzbach, J., and Caramazza, A. (2011). Differential activity for animals and manipulable objects in the anterior temporal lobes. Journal of Cognitive Neuroscience 23, 2059–2067

Universität Konstanz

[3] Arcara, G., Marelli, M., Buodo, G., and Mondini, S. (2014). Compound headedness in the mental lexicon: An event-related potential study. *Cognitive Neuropsychology* 31, 164–183

[4] Baayen, R. H. and Schreuder, R. (1999). War and peace: Morphemes and full forms in a noninteractive activation parallel dual-route model. *Brain and Language* 68, 27–32

[5] Bonin, P., Gelin, M., and Bugaiska, A. (2014). Animates are better remembered than inanimates: further evidence from word and picture stimuli. *Memory & Cognition* 42, 370–382

[6] Bonin, P., Gelin, M., Dioux, V., and Méot, A. (2019). "It is alive!" evidence for animacy effects in semantic categorization and lexical decision. *Applied Psycholinguistics* 40, 965–985

[7] Bonin, P., Gelin, M., Laroche, B., Méot, A., and Bugaiska, A. (2015). The "how" of animacy effects in episodic memory. Experimental Psychology

[8] Bronk, M., Zwitserlood, P., and Bölte, J. (2013). Manipulations of word frequency reveal differences in the processing of morphologically complex and simple words in German. *Frontiers in Psychology* 4

[9] Bugaiska, A., Grégoire, L., Camblats, A.-M., Gelin, M., Méot, A., and Bonin, P. (2019). Animacy and attentional processes: Evidence from the stroop task. *Quarterly Journal of Experimental Psychology* 72, 882–889

[10] Caramazza, A. and Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience 10, 1–34

[11] Duñabeitia, J. A., Perea, M., and Carreiras, M. (2007). The role of the frequency of constituents in compound words: Evidence from Basque and Spanish. *Psychonomic Bulletin & Review* 14, 1171–1176

[12] Fiorentino, R. and Poeppel, D. (2007). Compound words and structure in the lexicon. Language and Cognitive Processes 7, 953– 1000

[13] Hyönä, J. and Pollatsek, A. (1998). Reading finnish compound words: eye fixations are affected by component morphemes. Journal of Experimental Psychology: Human Perception and Performance 24, 754-1612 [14] Ji, H., Gagné, C. L., and Spalding, T. L. (2011). Benefits and costs of lexical decomposition and semantic integration during the processing of transparent and opaque english compounds. Journal of Memory and Language 65, 406–430 [15] Juhasz, B. J., Starr, M. S., Inhoff, A. W., and Placke, L. (2003). The effects of morphology on the processing of compound words: Evidence from naming, lexical decisions and eye fixations. British Journal of Psychology 94, 223 [16] Kuperman, V., Schreuder, R., Bertram, R., and Baayen, R. H. (2009). Reading polymorphemic Dutch compounds: toward a multiple route model of lexical processing. Journal of Experimental Psychology: Human Perception and Performance 35, 876 [17] Lemhöfer, K., Koester, D., and Schreuder, R. (2011). When bicycle pump is harder to read than bicycle bell: effects of parsing cues in first and second language compound reading. *Psychonomic Bulletin & Review* 18, 364–370 [18] Libben, G., Derwing, B. L., and de Almeida, R. G. (1999). Ambiguous novel compounds and models of morphological parsing. Brain and Language 68, 378–386 [19] Libben, G., Gibson, M., Yoon, Y. B., and Sandra, D. (2003). Compound fracture: The role of semantic transparency and morphological headedness. Brain and Language 84, 50–64 [20] MacGregor, L. J. and Shtyrov, Y. (2013). Multiple routes for compound word processing in the brain: Evidence from EEG. Brain and *Language* 126, 217–229 [21] Marelli, M. and Luzzatti, C. (2012). Frequency effects in the processing of italian nominal compounds: Modulation of headedness and semantic transparency. Journal of Memory and Language 66, 644–664 [22] Nairne, J. S., VanArsdall, J. E., Pandeirada, J. N., Cogdill, M., and LeBreton, J. M. (2013). Adaptive memory the mnemonic value of animacy. *Psychological Science* 24, 2099–2105 [23] Pollatsek, A., Hyönä, J., and Bertram, R. (2000). The role of morphological constituents in reading Finnish compound words. Journal of Experimental Psychology: Human perception and performance 26, 820 [24] Proverbio, A. M., Del Zotto, M., and Zani, A. (2007). The emergence of semantic categorization in early visual processing: ERP indices of animal vs. artifact recognition. BMC Neuroscience 8, 24

[25] Sandra, D. (1990). On the representation and processing of compound words: Automatic access to constituent morphemes does not occur. The Quarterly Journal of Experimental Psychology 42, 529–567

- [26] Smolka, E. and Libben, G. (2017). 'Can you wash off the hogwash?'-semantic transparency of first and second constituents in the processing of German compounds. Language, Cognition and Neuroscience 32, 514–531
- [27] Smolka, E., Preller, K. H., and Eulitz, C. (2014). 'Verstehen' ('understand') primes 'stehen' ('stand'): Morphological structure overrides semantic compositionality in the lexical representation of German complex verbs. Journal of Memory and Language 72, 16–36 [28] Taft, M. and Forster, K. I. (1975). Lexical storage and retrieval of prefixed words. Journal of verbal learning and verbal behavior 14, 638–647
- [29] VanArsdall, J. E., Nairne, J. S., Pandeirada, J. N., and Cogdill, M. (2015). Adaptive memory: Animacy effects persist in pairedassociate learning. *Memory* 23, 657–663
- [30] Vergara-Martínez, M., Duñabeitia, J. A., Laka, I., and Carreiras, M. (2009). Erp correlates of inhibitory and facilitative effects of constituent frequency in compound word reading. *Brain Research* 1257, 53–64
- [31] Zwitserlood, P. (1994). The role of semantic transparency in the processing and representation of Dutch compounds. Language and *Cognitive Processes* 9, 341–368