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Abstract 

Studying the relative weighting of different cues for the 
interpretation of a linguistic phenomenon is a core element in 
psycholinguistic research. This research needs to strike a 
balance between two things: generalisability to diverse lexical 
settings, which requires a high number of different 
lexicalisations and the investigation of a large number of 
different cues, which requires a high number of different test 
conditions. Optimizing both is impossible with classical 
psycholinguistic designs as this would leave the participants 
with too many experimental trials. Previously we showed that 
Active Learning (AL) systems allow to test numerous 
conditions (eight) and items (32) within the same experiment. 
As stimulus selection was informed by the system’s learning 
mechanism, AL sped-up the labelling process. In the present 
study, we extend the use case to an experiment with 16 
conditions, manipulated through four binary factors (the 
experimental setting and three prosodic cues; two levels each). 
Our findings show that the AL system correctly predicted the 
intended result pattern after twelve trials only. Hence, AL 
further confirmed previous findings and proved to be an 
efficient tool, which offers a promising solution to complex 
study designs in psycholinguistic research. 
Index Terms: Active Learning, psycholinguistics, cue 
weighting estimation, stimulus selection, prosody, limited data 

1. Introduction 
1.1. Background 

Understanding and assessing cue weights and their relation is 
crucial for the understanding of linguistic phenomena and 
studying cue weighting is therefore an essential element in 
experimental linguistics. Consequently, there are many of 
phonetic and phonological cue weighting studies in both 
segmental and prosodic research (e.g., [1-7]). Research designs 
for cue weighting studies should ideally employ a large number 
of orthogonally varied cues and different lexicalisations to 
ensure generalisability. This is often not feasible because such 
designs result in a very high number of experimental trials per 
participant. Therefore, conclusions are often drawn on limited 
data (small number of cues or lexicalizations).  

Traditionally, studies focus on testing (a) a high number of 
conditions (or cues) with few lexical items (down to N = 1), (b) 
a high number of lexical items with few conditions or 
circumvent the limitation by running (c) multiple experiments. 

Most experiments so far were designed to focus on a detailed 
picture of the weighting and interplay of the tested cues and 
went with a high number of conditions or cues, accepting the 
lower generalisability in terms of lexicalisations [8-13]. Fewer 
studies chose to focus on the lexical generalisability and tested 
a high number of lexicalisations in fewer conditions, in 
particular in research at the prosody-pragmatics interface [14, 
15]. We have previously shown that AL systems predict 
outcomes of a classical 2x2x2 study design (three factors with 
two levels each, eight test conditions) reliably and fast [16]. In 
the present study, we extend the application of AL systems to 
designs with four binary factors (16 test conditions). The reason 
why we use AL for our classification task is that we do not have 
a corpus of already labelled data at hand to train a classifier or 
apply statistical methods on from where we could extract cue 
weights. For estimating the cue weights, we need participants 
to label data. Since the task includes many conditions and items, 
we need to make this labelling process as efficient as possible. 
To this end we use AL. 

AL is a subfield of machine learning in which learning 
algorithms query annotators to label hitherto unlabelled 
instances [17]. AL techniques have been already employed in 
computer science research already since the 1980s [18]. They 
have been applied, among others, for named-entity recognition 
[19], semantic parsing [20], and text classification [21]. To 
reduce the human effort needed to obtain an annotated corpus, 
AL optimises the order in which the instances are labelled by 
applying an appropriate sampling strategy.  

Studies with AL have proven to be able to derive rules from 
a small set of labelled instances [16, 22, 23] and classifications 
can then be validated by presenting similar conditions with 
other items to the participants, which means it is not necessary 
to present each participant with every stimulus of the test set. 
As a result, the labelling process is sped-up compared to 
traditional behavioural cue weighting studies in two ways: (i) 
not all stimuli need to be labelled by the participants, and (ii) all 
cues are updated with each label, meaning that the labelling of 
one instance is transferred to other instances (see section 2.1.4). 
In addition, AL is fully data-driven since cue weights can be 
estimated from the participants’ responses. Taken together, 
these properties make AL a prime candidate for linguistic cue 
weighting research designs.  

1.2. Present study 

In the present study, we compare the predictions of an AL 
system for two scenarios representing the outcome patterns of 
a 2x2x2x2 experiment (four factors with two levels each, 



summing up to 16 test conditions). As in [16], 16 virtual agents 
labelled questions as either rhetorical question (RQ) or 
information-seeking question (ISQ) based on predefined 
probabilities (see 2.1.3); stimuli were selected by the AL system 
and predictions for the weighting of different cue combinations 
were derived based on a regression-based weighting 
implemented in the AL system. Evaluation criteria are the 
reliability of the predicted probabilities and the speed with 
which the predictions are achieved. Reliability is evaluated 
based on two measures: (i) The correlation between the actual 
responses (labels given by the virtual agents) and the AL 
predictions (the higher the correlation coefficient, the better the 
prediction), and (ii) the root-mean-square error (RMSE) 
between predicted probabilities and actual responses (the lower, 
the better the prediction), which indicates the deviance between 
predicted probabilities and actual responses. The speed, with 
which the scenario’s outcome patterns are achieved, was 
operationalised by analysing the relative reduction of RMS 
errors. Finally, we present a stopping criterion which indicates 
the point during the experiment where the AL predictions 
stabilize and there is no further improvement. The stopping 
criterion is computed in analogy to the speed measure (relative 
gain to the preceding 5 trails of the AL probabilities). It has the 
advantage of being able to be applied during an ongoing 
labelling process (in which probabilities are not know a priori), 
while the RMSE-based speed measurement can be calculated 
only post-hoc.  

2. Experiment 
2.1. Method 

2.1.1. Scenarios 

 
Figure 1: A possible outcome scenario for a design 

with four variables, voice quality (x-axis), pitch accent 
(left and right facets) and duration (colors) and 

Experiment (upper and lower panel) 

We used the probabilities in Figure 1 for the 16 test conditions. 
The proportions in Experiment I were taken from the outcome 
of a psycholinguistic experiment [14, 16, 23] while the 

proportions of Experiment II were entirely hypothetical in 
nature:  

(1) Experiment I: Stair-case pattern of the three prosodic 
variables (main effects) 

(2) Experiment II: Interaction between all three prosodic 
factors  

There were hence three prosodic factors (intonation condition: 
late peak vs. early peak, duration: short vs. long, and voice 
quality: breathy vs. modal) and one experiment factor 
(Experiment I vs. Experiment II). 

2.1.2. Material 

The set of stimuli consisted of 32 German wh-questions (e.g., 
Who likes lemon?), which were manipulated by fully crossing 
four factors: (a) nuclear accent type (late-peak vs. early-peak 
accent), (b) voice quality (breathy vs. modal voice on the final 
noun of the wh-question), and (c) duration of the utterance 
(lengthening or shortening of the utterance duration by 10%), 
resulting 64 test trails in eight test conditions (cue 
combinations) (see [14]) in (d) two different experimental 
settings (Experiment I vs. Experiment II) summing up to 16 
conditions in total. 

2.1.3. Virtual Agents 

Virtual agents were used to simulate human participants’ 
behaviour in a classification task in which a stimulus belongs to 
either the class of rhetorical question (RQ) or information-
seeking question (ISQ). The main reason for the use of virtual 
agents was to save participant time. To this end, a binomial 
function was implemented, i.e., the virtual agents performed 
independent draws from a binomial distribution whereby the 
probabilities were the target probabilities from Experiment I 
and Experiment II (see Figure 1). As in the case of human 
participants, the random draws ensured some variability in 
responses. [16] showed that the binomial function implemented 
for the virtual agents replicates human responses.  

2.1.4. Active Learning System 

We implemented an AL system that was used to query the 
virtual agents for class labels. In the backend, our system 
iteratively learned a predictive model on the labels provided by 
the virtual agents, i.e., each time a new label was provided, the 
entire model got updated. This model played a crucial role in 
the AL system. It performed two tasks: (1) it predicted the class 
labels (RQ or ISQ class) for unlabelled stimuli, and (2) selected 
the next stimulus for labelling.  

Regarding (1), by predicting class labels for unlabelled 
stimuli, we were able to reduce the number of trials needed for 
a labelled corpus generation. Regarding (2), we were able to 
obtain a stable and certain model that makes good predictions 
by applying an appropriate stimulus selection strategy. 
Strategies for stimulus selection presented in the related work 
are commonly classified as data-centred or model-based 
strategies. Data-centred strategies use the characteristics of the 
corpus and query labels for instances according to their 
similarity [24]. Model-based strategies, on the other side, 
integrate suggestions of a machine learning model that is 
trained on iteratively labelled data instances. Using different 
criteria, such as error reduction [25], classifier uncertainty 
[Smallest Margin, 24], or entropy [26], the system asks the 
oracle to label instances that improve the model's performance 
best. In contrast, data-centred strategies rely on the 
characteristics of the corpus and query labels for instances 
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according to their similarity or density [24]. In our system 
(following [16]), we used an uncertainty-based sampling 
strategy and asked the virtual agents to label stimuli where the 
model was most uncertain in predicting the correct label (i.e., 
where the probability for the prediction is close to 50% chance). 

The underlying model for prediction-making can be of 
various complexity, ranging from simple Association Rule 
Mining models or linear regression models to more complex 
Support Vector Machines. Since the model was created 
iteratively, whereby the amount of data in the early stage of 
labelling is limited, we were restricted to using models that 
perform well on extremely small sample sizes. Therefore, Deep 
Learning models are not suitable for the present experimental 
set-up. In this paper, we used a linear regression model, which 
allowed us to predict class labels as well as to determine the 
importance (i.e., weight) of cues and their combinations for the 
prediction task. The regression-based weighting of the AL 
algorithm was purely data-driven (by the virtual agents’ 
responses) and did not require an a priori specification of cue 
weights. This is a particularly appealing feature if one does not 
know whether there will be interactions between cues or not.  

The system’s algorithm was the following: Each time a new 
stimulus was labelled, the regression model provided an 
updated probability for each stimulus to be a RQ by learning a 
weighting of each cue and cue combination. As described 
before, we used the estimated probability for two purposes: 
prediction making and stimulus selection. If the probability of 
a stimulus for the RQ class was > 0.5, the predicted label was 
RQ; if the probability was < 0.5, the predicted label was ISQ. 
Otherwise, the predicted label was Other (p = 0.5). Since the 
regression-based weighting had the ability to extrapolate 
patterns to unseen conditions, the model was able to predict 
class labels for unseen stimuli if at least one of their cues had 
been learned by the model in the preceding labelling iterations. 

Regarding stimulus selection, we relied on probability 
values and their certainty. At the beginning of the labelling 
process, all stimuli were assigned 0.0 probability for RQ class. 
At first, the model queries labels for stimuli with unique, not 
yet observed cue combinations. Later in the labelling process, 
the system queried labels for stimuli for which the regression 
model had difficulties to make predictions. That is, the system 
queried a label for a stimulus with the probability value that was 
closest to 0.5 (i.e., the most uncertain stimulus). If multiple 
stimuli had the same probability value, the stimulus was 
selected randomly from one of those. 

2.1.5. Linear regression-based weighting 

A linear regression model estimated the weights (𝑤) of different 
cue combinations to the probability of a question to be 
classified as RQ. Each component can have a different weight: 
𝑃(𝐹%,𝐹',𝐹(,𝐹))
= 𝑤, +𝑤%𝐹% +	𝑤'𝐹' +	𝑤(𝐹( +𝑤)𝐹) +	𝑤/𝐹%𝐹' +𝑤0𝐹%𝐹(
+𝑤1𝐹%𝐹) +	𝑤2𝐹'𝐹( +	𝑤3𝐹'𝐹) +	𝑤%,𝐹(𝐹) +	𝑤%%𝐹%𝐹'𝐹(
+	𝑤%'𝐹%𝐹(𝐹) +	𝑤%(𝐹%𝐹'𝐹) +	𝑤%)𝐹'𝐹(𝐹)
+	𝑤%/𝐹%𝐹'𝐹(𝐹)																																																																														(1) 
where 𝐹%,𝐹',𝐹(,𝐹) (F = factor) denote the values of accent type 
(F1), voice quality (F2), duration (F3) and experiment (F4) 
respectively (these are encoded as binary {0,1} values and the 
corresponding contributions of the cue combinations 
{𝑤,,… ,𝑤%/}). The weights are inferred from the labelled data 
with the ordinary least squares procedure (OLS) [27]. The idea 
of OLS is to minimise the squared distance between the 
estimated probability of a question to be RQ, 𝑃(𝐹%,𝐹',𝐹(,𝐹)) 
and the actual label received from a participant, by changing the 

weights (𝑤). Once the weights are calibrated based on all 
labelled responses available, the probability of a question with 
any cue combination can be computed accordingly by inserting 
the values of the Factors 1, 2, 3 and 4 to equation 2. 

This implies that this generalised probability description is 
flexible enough to allow for multilevel factors. Furthermore, the 
estimated weights 𝑤 can take on any value, including negative 
ones. This allows us to model opposite cue effects depending 
on the interaction, e.g., in Experiment II the cue effects point in 
opposite directions. If we encode (𝐹%,𝐹',𝐹(,𝐹)) = (1,1,1,1) 
for a question which has an early peak, modal voice quality and 
short duration, the model will assign a positive value for 𝑤%/ >
0 and a negative value for 𝑤/. This assures that the contribution 
of short duration is positive only for this specific cue 
combination (𝐹%,𝐹',𝐹(,𝐹)) = (1,1,1,1)	and is negative for the 
other conditions. Such model flexibility comes with the price of 
being unstable for smaller numbers of trials. It has been argued 
in the literature that the best option is to truncate predicted 
probabilities that lie outside the [0,1] interval with zero and one 
respectively ([28] and references therein). 

2.2. Results 

In this section, we first discuss the reliability of the prediction 
and then turn to the speed with which a reliable prediction was 
achieved. We then present findings on a potential stopping 
criterion. 

2.2.1. Reliability of prediction 

To assess the reliability of AL predictions, we correlated AL 
predictions and actual responses at different points in the 
labelling process (after trial 8, 16, 32, 48 and 64). Since 
correlation coefficients can be high despite large deviances, we 
further extracted RMSE, see Table 1. The correlation 
coefficients are high throughout, and the RMSE scores indicate 
a low deviation (all rs ≥ 0.83, all ps < 0.001, all RMSEs ≤ 0.22, 
see Table 1), suggesting that the AL predictions are reliable 
throughout the whole experiment. 

 
Table 1: Correlation analysis and RMSE values after trial 8, 

16, 32, 48, 64 (df=14). 
 

 Scenario with four factors 
Results after 

Trial 8 
r = 0.83, p < 0.001, 

RMSE = 0.22 
Results after 

Trial 16 
r = 1, p < 0.001, 
RMSE = 0.01 

Results after 
Trial 32 

r = 1, p < 0.001, 
RMSE = 0.04 

Results after 
Trial 48 

r = 1, p < 0.001, 
RMSE = 0.03 

Results after 
Trial 64 

r = 0.99, p < 0.001, 
RMSE = 0.06 

2.2.2. Speed of prediction 

To assess the speed, we calculated and displayed the evolution 
of proportional RMSE gain (see Figure 2 for the first 30 trials) 
and defined a gain of under 5% compared to the average of the 
preceding five trials as marginal. Results showed that the 
marginal proportional difference to the error of the average of 
the five preceding trials is reached already after 12 trials. 



Figure 2: Evolution of proportional differences in 
RMSE to previous five trails in the range to 30 trials; 

values form trial 31 onwards stayed at an almost 
identical level and are not shown. 

2.2.3. Stopping criterion 

In order to be able to stop the labelling process of a participant 
if the AL predictions stabilize, a stopping criterion can be 
implemented in the system. To this end, we compared the 
absolute values of the predicted AL probabilities to the mean of 
the preceding five trials. Results show stable AL predictions at 
trial 17 when the gain is marginal, i.e., under 5%.   
 

 
Figure 3: Evolution of proportional differences in AL 
probabilities to previous five trails in the range to 30 
trials; values form trial 31 onwards did not change 

and are not shown. 

3. Discussion 
In the present study, we set out to test whether AL systems can 
predict outcome patterns with four binary factors (16 test 
conditions), i.e., more conditions than used in a previous test 
case [16].  Our results show that AL systems can reliably predict 
predetermined proportions at an early point during the labelling 
process, i.e., the stimulus selection informed by the regression-
based AL model is reliable and fast.  

The performance of the AL model was evaluated by two 
measures for the evaluation of the reliability (correlation 
coefficient and RMSE) and one for the speed (relative 
improvement of the proportional gain of the mean prediction 
RMSE compared to the average of the preceding five trials). 
The AL system was able to predict the outcome reliably and fast 
without having an already labelled dataset at hand, which serves 
as baseline for the cue weights and without knowing the true 
label of the stimulus. The latter fact is essential for the 
applicability of AL in linguistic cue weighting research, since 
knowing the weight of a cue, or a cue combination for a certain 
phenomenon is the goal of these studies. We showed that 
reliable predictions were achieved in a more complex design 
(four orthogonally-crossed factors, 2x2x2x2) at an early point 
during the labelling. Compared to experimental scenarios with 
eight test conditions, as presented in [16], the present 16-

condition-setting is slightly slower and has lower correlation 
and RMSE values during the early stages (cf. [16] speed: 
marginal at trial 8 latest; correlation after trial 8: r ≥ 0.95; 
RMSE after trial 8: ≤ 0.19). The proposed stopping criterion 
(based on the proportional difference of the AL probabilities 
compared to the average of the previous five trials), further 
suggests a similar point of stabilization as the speed measure. It 
appears to be an adequate replacement for the RMSE-based 
speed measurement during an ongoing labelling process. Again, 
the AL system in [16] reached the marginal gain faster. Yet, in 
spite of the slightly poorer performance in reliability and speed 
measures for the four-factor design as compared to the three-
factor design in [16], our results in the present setting still show 
a reliable and quick replication of the target pattern. Hence, AL 
also proves to be effective in more complex study designs. 

Using a linear-regression-based weighting in our AL model 
had the following advantages over other weighting systems: 
computational speed, and flexibility in modelling the direction 
of cue interaction effects. The proposed combination of AL and 
regression-based approaches has a very promising future in 
larger multi-level cue experiments. By design, the AL systems 
recalculate the predicted classification probabilities for all 
question with a single participant label. Such increase in 
effective sample size allows for an implementation of logistic 
regression and support vector machines to further improve on 
classification accuracy [29]. 

We are currently working on an even more complex 
experimental setting, in which, unlike in our test case, 
participants will not be able to label all target sentences due to 
the even higher number. A possible solution to such problems 
might be AL systems with a global learning feature and logistic 
regression-based weighting, i.e., stimulus selection is based on 
the already labelled data from the previous participants and the 
system further updates the cues’ weights with every new item 
labelled across the whole labelling process. A further extension 
to our model would be to learn several global models each 
representing a separate participant group. This could account 
for individual differences in cue weighting.    

4. Conclusions 
AL systems can help to facilitate research endeavours, which 
aim to provide a generalizability to lexical items as well as to 
cues/cue combinations. Results suggest that the employed 
measures are dependent on the number of factors used in an 
experiment. A higher number of factors results in slightly lower 
performance of the AL during the early stages of labelling, but 
still produces reliable results, which are obtained at a higher 
speed compared to classical behavioural studies. 
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