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Abstract 
Many studies relate acoustic voice quality measures to 
perceptual classification. We extend this line of research by 
training a classifier on a balanced set of perceptually annotated 
voice quality categories with high inter-rater agreement, and 
test it on speech samples from a different language and on a 
different speech style. Annotations were done on continuous 
speech from different laboratory settings. In Experiment 1, we 
trained a random forest with Standard Chinese and German 
recordings labelled as modal, breathy, or glottalized. The model 
had an accuracy of 78.7% on unseen data from the same sample 
(most important variables were harmonics-to-noise ratio, 
cepstral-peak prominence, and H1-A2). This model was then 
used to classify data from a different language (Icelandic, 
Experiment 2) and to classify a different speech style (German 
infant-directed speech (IDS), Experiment 3). Cross-linguistic 
generalizability was high for Icelandic (78.6% accuracy), but 
lower for German IDS (71.7% accuracy). Accuracy of 
recordings of adult-directed speech from the same speakers as 
in Experiment 3 (77%, Experiment 4) suggests that it is the 
special speech style of IDS, rather than the recording setting 
that led to lower performance. Results are discussed in terms of 
efficiency of coding and generalizability across languages and 
speech styles. 
Index Terms: voice quality, phonation type, acoustic 
measures, random forest, cross-linguistic generalization, infant-
directed speech, German, Chinese, Icelandic 

1. Introduction 
In a broad sense, voice quality includes glottal (e.g., f0, 
phonation) and supralaryngeal properties (e.g., nasalization) of 
a speaker; in a narrow sense, voice quality refers only to the 
glottal characteristics [1], more precisely termed ‘phonation 
type’ or ‘phonatory quality’ (for a historical overview of 
descriptions of voice quality, see [2, section 1.3]. In this paper, 
we focus on phonation type. Phonation is strongly affected by 
the biological characteristics of the glottis, the length and 
structure of the vocal folds and their tenseness, as well as 
muscular tension in the cricothyroid and crico-arythenoid 
muscles, cf. [1], leading to the perceived long-term 
characteristics of a person’s voice [3, 4]. In addition to indexical 
information, differences in voice quality can signal lexical 
contrasts (the difference between (glottalized) /t/ and (non-
glottalized) /d/ in some American English varieties [5], 
phonemic contrasts of vowels in Gujarati [6], cf. [7]), illocution 
type (breathier voice in rhetorical than in information-seeking 
questions [8, 9]), irony and sarcasm [10, 11], as well as 
information-structure [e.g., 12 on Finnish focus marking]. 
Voice quality also plays a role in signalling emotions [13]; as a 
social marker for gender identity [14 for English, 15 for 

Japanese] and often occurs in infant-directed speech (IDS) [16-
19]. 

For the classification of non-pathological voice quality, as 
e.g., in linguistic and paralinguistic research, voice quality 
classification often uses the labels modal voice, breathy voice, 
or glottalized voice. These categories have been introduced in 
[1], among other categories. [1] describes neutral (modal) voice 
quality as being derived from periodic and efficient way of 
vocal fold vibration without audible friction noise. Some 
researchers locate modal voice in the typical fundamental 
frequency (f0) range of the speaker; fundamental frequencies 
that exceed the typical f0-range are called falsetto, those below 
the typical f0-range creak. Breathy voice is characterized by 
auditory glottal frication, glottalized voice quality by partly 
irregular, low frequency vocal fold vibration [1].  

The use of perceptual classification in linguistic and 
paralinguistic question has the advantage that it represents a 
valid classification with functional value. The flip side is that 
classification may be circular (the perceived linguistic or 
emotional category may influence the choice of voice quality) 
and is more subjective [20]. Unlike in pathological settings or 
the forensic domain, coders are typically not extensively trained 
for different phonation types [21]. Acoustic measures, on the 
contrary, have the advantage that they can be easily extracted 
from sound recordings (unlike inverse filtering or physiological 
measures) and they appear to be more objective than perceptual 
classification (nevertheless, perceptual classification of voice 
quality may be useful when it comes to the interpretation of 
linguistic or paralinguistic functions [22]). There are a large 
number of studies that relate acoustic measures to perceived 
voice quality, including some meta studies. Measures related to 
breathy voice are the periodicity in the signal, such as 
harmonics-to-noise ratio, hnr [23], the amplitude of the first 
harmonics H1 (i.e., f0), which is measured relative to the 
amplitude of the second harmonic, H1-H2 [6, 7, 23] or relative 
to the amplitude of the second or third formant, H1-A2 or H1-
A3 [6, 14, 24], and cepstral-peak prominence, cpp [16, 23]. 
Many of these studies investigate the acoustic characteristics of 
sustained vowels [25, 26] (which have the advantage that the 
phonation and fundamental frequency is time-invariant and 
there are no effects of speech rate, prominence and phrasing), 
or pathological voice quality [21, 27].  

In this paper, our focus is on voice quality from continuous 
speech, collected in various projects at our Lab, in which non-
modal voice quality on different constituents of an utterance 
signaled a linguistic contrast. In Experiment 1, we train a 
random forest classifier to predict breathy, glottalized, and 
modal vowels in different position of utterances. We then test 
the cross-linguistic generalizability of the statistical model by 
applying it to a similar speech style in Icelandic (Experiment 
2). Next, we test the same model with speech samples from a 
different speech style (German IDS, Experiment 3) and to adult-



directed speech (ADS) from the same speakers (Experiment 4), 
which allows us to compare lab speech (Exp. 1 and 2) to 
spontaneous speech (Exp. 3 and 4). Given that biological sex 
affects voice quality and acoustic correlates [28, 29], we 
focused on biologically female speakers in this paper. 

2. Experiment 1 
We used a series of acoustic markers of voice quality to predict 
three perceptual voice quality labels (breathy, modal, 
glottalized). Data selection was based on the goal of assembling 
a data set in which modal and non-modal (breathy and 
glottalized) phonation type occurred almost equally frequently. 
The rationale for this decision was that modal voice quality is 
the default in non-pathological voices and hence more frequent 
than the non-modal voice qualities breathy and glottalized 
voice. This imbalanced distribution may lead to models that are 
particularly tuned to modal voice.  

2.1. Methods 

2.1.1. Materials 

The main data are drawn from [30], which consists of 1737 
vowels utterances from 10 female speakers from Beijing. The 
recordings were done in a quiet room using a headset 
microphone Shure SM10A and were digitized onto a computer 
with 44.1 kHz, 16 Bit. Speakers read contexts that prompted 
either an information-seeking question or a rhetorical question. 
The speech material consisted of wh-questions (e.g., ‘Who likes 
lemons?’) and polar questions (e.g., ‘Does anyone like 
lemons?’) and the sentence-final word was balanced for lexical 
tone. One native-speaker labeler annotated the voice quality of 
the vowels of the first and last word (50% of the labels were 
annotated by one of the authors with 95% accuracy (kappa κ = 
0.94, almost perfect agreement [31]). In total, 132 vowels were 
glottalized, 1605 were modal (there were no breathy instances). 
We hence included 109 breathy-voice vowels (produced by 10 
female speakers) from a similar experiment for German [9]. 
The German recordings were done in a sound-attenuated cabin 
at the PhonLab of the University of Konstanz with the same 
recording device as in [30]. The recordings were annotated for 
voice quality on all content words by one annotator (agreement 
for 20% of the data by a second annotator was 89.7%, κ = 0.71, 
which is substantial [31]). Finally, to increase the data set, we 
included another 64 breathy voice and 191 modal voice vowels 
of one speaker that was used in a perception experiment [22]. 
She was recorded in a sound-attenuated room at the PhonLab 
of the University of Konstanz, using an MXL 990 condenser 
microphone and a Tascam HDP2 portable stereo audio recorder 
(44.1 kHz, 16 Bit). 

2.1.2. Acoustic measures 

We extracted acoustic measures that are frequently used in the 
literature to distinguish pathological and non-pathological 
voice qualities.  We adapted the algorithms described in 
VoiceSauce [32] for praat [33] to extract measures that 
operationalize periodicity, the relative height of the first 
harmonics H1, spectral tilt and cpp at the center of vowels that 
were manually labelled for voice quality (40ms window). Prior 
to analyses all recordings were down-sampled to 16kHz, 
converted to mono and scaled to a peak amplitude of 0.9. The 
following measures were extracted: 
• Harmonics-to-noise-ratio (hnr), shimmer and jitter 

(extracted using the Voice Report in praat [34]). 

• H1-H2 in dB: difference in amplitude for first and second 
harmonics [6, 35]. The amplitudes of H1 and H2 were the 
maximum in the long-term averaged spectrum (standard 
settings in praat) in the respective frequency range of f0 
(H1) and the second harmonics (H2) +/- 10%. F0 was 
extracted via a praat pitch object with the standard settings 
(range 75-550Hz). If f0 could not be extracted, the value 
was set to NA.   

• H1-A2 in dB: difference in amplitude for first harmonic and 
second formant [24]. The second format was extracted via 
a burg-formant object in praat with the standard settings at 
the midpoint of the vowel.  If f0 could not be extracted, the 
value was set to NA. 

• H1-A3 in dB: difference in amplitude for first harmonic and 
third formant [35]; the extraction was analogous to H1-A2.   

• H1*-A3* in dB: difference in amplitude for first harmonic 
and the third formant, corrected for formant position 
following the procedure in [36]. 

• Cepstral-peak prominence, cpp [16, 37]: The height (i.e., 
“prominence”) of that peak relative to a regression line 
through the overall cepstrum. The data was multiplied with 
a Hamming window and then transformed into the cepstral 
domain. The cpp is the maximum around the quefrency of 
the pitch period. This peak was then normalized relative to 
the linear regression line (calculated between 1 ms and the 
maximum quefrency).  

• Glottal to noise excitation ratio, gne [38]: the maximum of 
a harmonicity object (gne) that was extracted with the 
standard settings in praat in the 40ms window (rectangular). 
This measures is often used for the classification of 
pathologically breathy voice [39]. 

• b1 and b2 in Hz [40]: bandwidth of the first and second 
formant (in Hz) at the center of the vowel, extracted from 
the burg formant object. 

• Binary variable if f0 could be measured or not (f0_yesno), 
and whether shimmer could be measured or not. 

Since voice quality may change within the utterance, global 
measures as in [41] could not be used.  

2.1.3. Random forest 

To determine the acoustic cues that are most important for the 
perceptual voice quality classification, we first assembled a 
balanced data set. From the 1796 modal voice vowels we 
randomly selected 400 vowels, slightly more than non-modal 
phonation stimuli (balancing speaker identity, experimental 
origin and position in the utterance).   
 

Table 1: Number of annotated vowels used for training the 
classifier, split by voice quality label 

 Breathy 
voice 

Glottalized 
voice 

Modal 
voice 

total 

Full set  173 132 1796 2101 
Full set 
(balanced) 

173 132 400 705 

Training 
set 

138 101 325 564 

Test set 35 31 75 141 
 
To train the random forest, we randomly selected 80% of the 
data for training and 20% for test (again balancing the above 



factors), see Table 1. The random forest included all the 
acoustic variables introduced in 2.1.2, using the R-package 
randomForest [42]. The number of trees was set to 1000, mtry 
(the number of acoustic variables selected at each step was set 
to 8). Random forests extract the importance of the individual 
variables using the Gini-index [42]. 

2.2. Results 

Figure 1 shows the importance of the acoustic features (left top 
corner), A-C displays the most important measures across the 
three voice quality labels. The Gini-index shows that hnr was 
ranked very high, followed in importance by cpp and the 
relative amplitude of the first harmonics in relation to the 
second formant in dB (H1.A2.dB). The confusion matrix for the 
test set is shown in Table 2. The overall accuracy was 78.7% 
(breathy voice 79.3%, glottalized voice 95%, modal voice 
75%), κ=0.60. 

Table 2: Confusion matrix of predicted labels 
(columns) and actual labels (rows) for Experiment 1. 

 breathy 
voice 

glottalized 
voice 

modal 
voice 

breathy 23 0 6 
glottalized 1 19 0 
modal 11 12 69 

 

 
 

  
Figure 1: Results of the random forest for the balanced data 
set of Experiment 1. Top-right: Mean decrease in Gini, A-C: 

most important acoustic measures. 

2.3. Discussion 

The accuracy of predicting three classes of voice quality labels 
was nearly 79%. The most important acoustic variable for 
prediction were hnr, cpp, and H1-A2, which is in line with 
previous findings. For instance, [23] found the highest 
correlation with cpp. The variance explained increased to 94% 
with further acoustic measures (including a breathiness index 
and the amplitude of first harmonic). [14] report a correlation 
of 83% between first harmonic amplitude and breathiness 
ratings, [23] a correlation of 66% for the same measure, H1-H2 
(they attribute their lower value to the higher proportion of male 
speakers in their sample).  

Note that the model did not contain speaker identity, 
information on the vowel quality or language, and was trained 

on continuous speech data with different speaking rates and 
intonation contours. Information on these factors may likely 
improve the model fit, but at the same time limit the 
generalizability of the model. 

3. Experiment 2 
Exp. 2 tested whether the acoustic model from Exp. 1 can be 
applied to the classification of voice quality of Icelandic 
question data (similar linguistic structure, but a different 
language and recording environment). Icelandic is a Germanic 
intonation language, which, unlike German, exhibits word-
initial stress with very few exceptions and final falling contours 
across utterance types [43]. 

3.1. Methods 

3.1.1. Data 

The data were drawn from [44]. Eleven female speakers were 
recorded in a sound-attenuated room (with the same materials 
and recording device as for the German and Chinese speakers 
in Exp. 1). Similar to the German data of Exp. 1, voice quality 
was annotated on the stressed syllable of the three content 
words. We extracted acoustic measures from 1243 vowels, 23 
with breathy voice quality (1.9%), 114 with glottalized voice 
(9.2%), and 1106 with modal voice quality (89%). Interrater 
reliability for 82 vowels (7% of the data) resulted in an 
agreement of 90% (κ = 0.71). 

3.1.2. Analysis 

We extracted the same acoustic measures as in Exp. 1. We then 
used the model from Exp. 1 to predict the voice quality labels.  

3.2. Results 

Table 3 shows the confusion matrix for Exp. 2. The overall 
accuracy of the prediction was 78.6% overall (69.6% for 
breathy voice, 44% for glottalized voice and 82.4% for modal 
voice stimuli), κ=0.29. 

Table 3: Confusion matrix for Experiment 2. 

 breathy 
voice 

glottalized 
voice 

modal 
voice 

breathy 16 0 7 
glottalized 22 51 42 
modal 133 62 910 

3.3. Discussion 

The model trained on German question data generalized well to 
the Icelandic question data, as indicated by an equally high 
accuracy (78.8% in Exp. 1 vs. 78.6% in Exp. 2). Perceptual 
evaluation of a sample of misclassifications suggests that the 
40ms analysis window is sometimes too large (including 
neighboring voiceless sounds, leading to misclassification as 
breathy) or too small (missing vowel-initial glottalization, 
leading to misclassification as modal). 

4. Experiment 3 
Exp. 3 tested the applicability of the model in Exp.1 to German 
IDS. IDS has been argued to be more breathy and variable than 
ADS [16, 17], and hence might be more challenging to predict 
than ADS read speech. 
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4.1. Methods 

The German IDS data was collected and annotated in [18, 19]. 
It contained 449 utterances from eleven mothers interacting 
with their children. They were recorded in a quiet room at the 
University of Konstanz. The speakers wore DPA Microphones 
Headset Microphone (DPA 4088), connected to a Sennheiser 
Bodypack Transmitter (SK100) and an Olympus Linear PCM 
Recorder (LS-11). Recordings were in a 16 bit format at 44.1 
kHz. Speakers opened a treasure box and extracted one of eight 
objects at a time and talked about them to their two-year old 
children. The stressed vowel of the target objects and of the 
vowels of the word preceding and following the target object 
were annotated for voice quality. In total, there were 996 
vowels, for which acoustic measures could be extracted, 689 
with modal voice (69.2%), 151 with breathy voice (15.1%) and 
156 with glottalized vowels (15.7%). Interrater agreement for 
the total set of 1028 vowels was 81.0% (κ = 0.59). The analysis 
was the same as for Exp. 1 and 2.  

4.2. Results 

Table 4 shows the confusion matrix for Exp. 3. Overall 
accuracy was 71.7% (40% for breathy, 37% for glottalized and 
87% for modal voice), κ=0.23. As in Exp. 2, the less frequent 
non-modal voice qualities had lower classification rates than 
the more frequent modal voice.  

Table 4: Confusion matrix for Experiment 3. 

 breathy 
voice 

glottalized 
voice 

modal 
voice 

breathy 60 8 83 
glottalized 11 57 88 
modal 76 16 597 

4.3. Discussion 

IDS was classified less well with the laboratory (read speech) 
model of Exp. 1 than the Icelandic question data (71.7% vs. 
78.6% accuracy), despite the fact that the model in Exp. 1 was 
partly trained on German. The lower classification may be due 
to the different communicative style (ADS in Exp. 1 and 2 vs. 
IDS in Exp. 3), due to the difference in spontaneity (read speech 
in Exp. 1 and 2 vs. spontaneous speech in Exp. 3) or due to the 
difference in recording setting (sound attenuated cabin in 
Experiments 1 and 2 vs. a quiet room in Exp. 3). To investigate 
these issues, we tested spontaneous ADS data from the same 
speakers in the same room as in Exp. 3 (recorded in the same 
experimental session).  

5. Experiment 4 

5.1. Methods 

Exp. 4 used 433 vowels of continuous speech in which the 
speakers of Exp. 3 talked to an adult (experimenter, child not 
present). There were 33 breathy (7.7%), 81 glottalized (18.8%) 
and 316 modal voice stimuli (73.5%). Interrater agreement for 
78 vowels was 96.2% (κ = 0.90).  

5.2. Results and discussion 

The overall accuracy was 77.2% (κ=0.26, see Table 5) and was 
hence comparable to Exp. 1 and 2. This suggests that the low 
accuracy in Exp. 3 is likely due to the special speech style used 
in IDS, rather than the spontaneity or the recording setting. 

Table 5: Confusion matrix for Experiment 4. 

 breathy 
voice 

glottalized 
voice 

modal 
voice 

breathy 14 3 16 
glottalized 7 46 28 
modal 30 14 272 

6. General Discussion 
This paper presents a random forest model to map acoustic data 
to perceptual voice quality classifications. This is important as 
voice quality does not only signal indexical information, but 
also linguistic contrasts. The model had an accuracy of nearly 
80% on an unseen sample of data from the trained population 
(German and Chinese question data) and it transferred well to 
Icelandic question data and to German spontaneous ADS. The 
accuracy of automatic classification was a bit lower for German 
IDS. There are a number of potential factors that may explain 
the differences in accuracy (and kappa) across experiments, 
such as the unbalanced distribution of the different voice quality 
labels or the differences in interrater accuracy and reliability 
(kappa). Post-hoc correlation analyses did not show any 
significant correlations between these factors (all p > 0.2). 
Thus, for the current data, neither human classification 
accuracy (or reliability) nor the proportion of modally voiced 
vowels seem to affect machine classification accuracy and 
reliability. The lack of a correlation with the proportion of 
modally voiced stimuli is positive, since a skewed distribution 
can hardly be avoided in natural data. We successfully avoided 
distributional effects by using a balanced set of voice quality 
labels for training.  

It is noteworthy that voice quality labels in IDS were 
hardest to predict. It is conceivable that the higher and more 
variable f0 and vowel formants in IDS compared to ADS [46, 
47] affected our acoustic measures [48] which, in turn would 
suggest a register-specific acoustic profile of voice quality.  

Further research with different languages and speech styles 
is necessary to investigate whether the model generalizes more 
broadly or where its limits are. Furthermore, we will look more 
closely into the misclassifications to detect potential patterns 
and issues (cf. the window size, the perception of voice quality 
in different consonantal environments), which will allow to 
improve accuracy and kappa across corpora, in particular for 
less laboratory speech styles.  

7. Conclusions 
We presented a classifier, trained on a small set of perceptually 
annotated voice quality labels from German and Chinese 
continuous, scripted speech, which generalized well to another 
language (Icelandic) and to more spontaneous productions in 
German, despite different recording settings. Generalization to 
another speech style, German IDS, was harder and further 
research will investigate on how to improve generalization 
across different speech styles.  
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