A CRITICAL POPULATION THRESHOLD FOR CONTACT-INDUCED SIMPLIFICATION

HENRI KAUHANEN*1
*Corresponding Author: henri.kauhanen@uni-konstanz.de
${ }^{1}$ Department of Linguistics, University of Konstanz, Konstanz, Germany

Learning biases have long been theorized to play a causal role in the cultural evolution of linguistic systems. In particular, existing literature suggests that the difficulty encountered by second-language (L2) learners in acquiring complex linguistic features may contribute to the loss of those features from the target language in situations of language contact (Bentz \& Winter, 2013; Berdicevskis \& Semenuks, 2022; Lupyan \& Dale, 2010; Sinnemäki \& Di Garbo, 2018; Trudgill, 2011; Walkden \& Breitbarth, 2019; Weerman, 1993; also see Jansson, Parkvall, \& Strimling, 2015 on modelling creolization). Against the backdrop of this body of research, it is reasonable to expect that the population fraction of L2 learners may act as a bifurcation parameter: if sufficiently many L2 learners are present in a speech community, the loss of L2-difficult features may be permanent. Without an explicit model combining population and learning dynamics, however, it is impossible to say where the critical value of such a putative bifurcation parameter might lie.

We propose such a model by extending the variational learner (Yang, 2002) to cover L2 as well as L1 acquisition. For L2 (but not L1) learners, the extended model includes a learning bias that works against the successful (native-like) acquisition of the L2-difficult variant. The asymptotic dynamics of this extended learning model can be studied just like those of the ordinary linear reward-penalty learning scheme (Bush \& Mosteller, 1955) that underlies the variational learner. In particular, we show that an L2 learner's expected probability of employing an L2-difficult grammar G_{1} over its easier-to-acquire competitor G_{2} tends to a definite value as learning iteration tends to infinity.

Taking the usual infinite learner limit (cf. Yang, 2000) then yields a deterministic dynamical system that describes the evolution of a mixed population of L1 and L 2 speakers. This system has three parameters: σ, the fraction of L 2 speakers in the population; D, the learning-theoretic strength of the L2-difficulty of G_{1}; and α, the fitness ratio (Kauhanen \& Walkden, 2018) of the two grammars.

We show analytically that this system always has exactly one stable equilibrium. The system's dynamics are, however, separated into two phases: in one
phase, the stable equilibrium satisfies $p>0$ and $q>0$, where p and q stand for the probability of the L2-difficult grammar G_{1} in the L1 and L2 populations, respectively. In other words, the L2-difficult grammar is retained in each population at some non-zero (and possibly high) frequency. In the second phase, however, the attractor is the origin $(p, q)=(0,0)$, meaning that the L2-difficult grammar is wiped out from both populations, including the L1 speaker population which itself is not subject to the learning bias (but feels its effects through interactions with the L 2 population). This bifurcation occurs as σ crosses the critical value

$$
\begin{equation*}
\sigma_{\mathrm{crit}}=\frac{(\alpha-1)(D+1)}{\alpha D} \tag{1}
\end{equation*}
$$

that is, fractions of L2 speakers $\sigma>\sigma_{\text {crit }}$ exhibit simplification dynamics (Fig. 1).
To provide some empirical support for the model, we estimate the parameters σ and α from demographic and corpus data, and provide reasonable orders of magnitude for the learning bias D, for two historical developments: the loss of verbal inflection in Afrikaans (Trudgill, 2011) and the partial loss of null subjects in Afro-Peruvian Spanish (Sessarego \& Gutiérrez-Rexach, 2018). Empirically, the simplification process in Afrikaans went to completion, whereas in Afro-Peruvian Spanish null subjects retain a partial status. These facts are predicted by the model, in the sense that $\sigma>\sigma_{\text {crit }}$ in the former case but not in the latter.

Figure 1. Stable equilibrium (p, q) of the mixed speech community (top row: probability of G_{1} in L1 speakers; bottom row: L2 speakers). Full simplification occurs above the bifurcation threshold $\sigma_{\text {crit }}$ (equation 1), depicted as the dashed white curve.

Acknowledgements

Funded by the European Research Council as part of project STARFISH (851423).

References

Bentz, C., \& Winter, B. (2013). Languages with more second language learners tend to lose nominal case. Language Dynamics and Change, 3, 1-27.
Berdicevskis, A., \& Semenuks, A. (2022). Imperfect language learning reduces morphological overspecification: experimental evidence. PLoS ONE, 17(1), e0262876.
Bush, R. R., \& Mosteller, F. (1955). Stochastic models for learning. New York, NY: Wiley.
Jansson, F., Parkvall, M., \& Strimling, P. (2015). Modeling the evolution of creoles. Language Dynamics and Change, 5(1), 1-51.
Kauhanen, H., \& Walkden, G. (2018). Deriving the constant rate effect. Natural Language \& Linguistic Theory, 36(2), 483-521.
Lupyan, G., \& Dale, R. (2010). Language structure is partly determined by social structure. PLoS ONE, 5(1), e8559.
Sessarego, S., \& Gutiérrez-Rexach, J. (2018). Afro-Hispanic contact varieties at the syntax/pragmatics interface: pro-drop phenomena in Chinchano Spanish. In J. King \& S. Sessarego (Eds.), Language variation and contactinduced change: Spanish across space and time. Amsterdam: Benjamins.
Sinnemäki, K., \& Di Garbo, F. (2018). Language structures may adapt to the sociolinguistic environment, but it matters what and how you count: a typological study of verbal and nominal complexity. Frontiers in Psychology, 9, 1141.
Trudgill, P. (2011). Sociolinguistic typology: social determinants of linguistic complexity. Oxford: Oxford University Press.
Walkden, G., \& Breitbarth, A. (2019). Complexity as L2-difficulty: implications for syntactic change. Theoretical Linguistics, 45(3-4), 183-209.
Weerman, F. (1993). The diachronic consequences of first and second language acquisition: the change from OV to VO. Linguistics, 31, 903-931.
Yang, C. D. (2000). Internal and external forces in language change. Language Variation and Change, 12, 231-250.
Yang, C. D. (2002). Knowledge and learning in natural language. Oxford: Oxford University Press.

